Search results

Search for "thermoelectric materials" in Full Text gives 11 result(s) in Beilstein Journal of Nanotechnology.

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • both metallic and semiconducting properties. These networks have been applied to thermoelectric materials and have been found to exhibit low interplane thermal conductivity, which is not typical of carbon materials, while maintaining the interplane electrical conductivity. Müllen, Fuchs, Chi, and co
PDF
Album
Review
Published 03 Apr 2023

Improvement of the thermoelectric properties of a MoO3 monolayer through oxygen vacancies

  • Wenwen Zheng,
  • Wei Cao,
  • Ziyu Wang,
  • Huixiong Deng,
  • Jing Shi and
  • Rui Xiong

Beilstein J. Nanotechnol. 2019, 10, 2031–2038, doi:10.3762/bjnano.10.199

Graphical Abstract
  • of the MoO3 monolayer exhibit an evident anisotropic behavior which is caused by the similar anisotropy of the electrical and thermal conductivity. The thermoelectric materials figure of merit (ZT) value along the x- and the y-axis is 0.72 and 0.08 at 300 K, respectively. Moreover, the creation of
  • calculations; molybdenum trioxides; MoO3 monolayer; oxygen vacancies; thermoelectric properties; Introduction Thermoelectric materials that can directly convert temperature gradients to voltage gradients and vice versa provide a valid strategy to mitigate the global energy crisis. Owing to the unique ability
  • of utilizing waste heat without generating any greenhouse gas, thermoelectric technology has attracted increasing attention [1]. Nevertheless, the application of thermoelectric materials is limited by the low energy conversion efficiency. The performance of thermoelectric materials is usually
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2019

Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere

  • Petr Knotek,
  • Tomáš Plecháček,
  • Jan Smolík,
  • Petr Kutálek,
  • Filip Dvořák,
  • Milan Vlček,
  • Jiří Navrátil and
  • Čestmír Drašar

Beilstein J. Nanotechnol. 2019, 10, 1401–1411, doi:10.3762/bjnano.10.138

Graphical Abstract
  • preparation and characterization of metallic nanoinclusions on the surface of semiconducting Bi2Se3 that could be used for an enhancement of the efficiency of thermoelectric materials. We used Au forming a 1D alloy through diffusion (point nanoinclusion) and Mo forming thermodynamically stable layered MoSe2
  • revealed that long-time exposure (tens of seconds) to the electrical field leads to deep oxidation and the formation of perturbations greater than 1 µm in height, which hinder the I–V measurements. Keywords: Kelvin probe atomic force microscope; nanoinclusion; Schottky barrier; thermoelectric materials
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2019

Functional materials for environmental sensors and energy systems

  • Michele Penza,
  • Anita Lloyd Spetz,
  • Albert Romano-Rodriguez and
  • Meyya Meyyappan

Beilstein J. Nanotechnol. 2017, 8, 2015–2016, doi:10.3762/bjnano.8.201

Graphical Abstract
  • sensing and energy applications, carbon-based materials for chemical sensing and energy applications, piezoelectric and thermoelectric materials for energy harvesting applications, new nanotechnology-based sensors for monitoring gaseous and liquid pollutants, surface-sensitive spectroscopy for studying
PDF
Editorial
Published 26 Sep 2017

Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons

  • Hatef Sadeghi,
  • Sara Sangtarash and
  • Colin J. Lambert

Beilstein J. Nanotechnol. 2015, 6, 1176–1182, doi:10.3762/bjnano.6.119

Graphical Abstract
  • for this are changes in the phonon density of states, an increased phonon-boundary scattering and the dispersion of the nanostructures in low dimensional semiconductors [2][4][5][6]. The efficiency of thermoelectric materials and devices is determined by their thermoelectric figure of merit (ZT = S2GT
PDF
Album
Full Research Paper
Published 18 May 2015

Review of nanostructured devices for thermoelectric applications

  • Giovanni Pennelli

Beilstein J. Nanotechnol. 2014, 5, 1268–1284, doi:10.3762/bjnano.5.141

Graphical Abstract
  • (section I “Principles of thermoelectricity”). Section II, “Materials for thermoelectricity”, will describe the principles for the optimization of TEG efficiency. Then, the most common thermoelectric materials currently available will be briefly illustrated. Section III will show the advantages of
  • conductivity kt. Materials for thermoelectricity Several experimental works on thermoelectric materials are devoted to maximize the power factor S2σ, which is proportional to the power delivered to the load RL. Given two heat sources (or better a heat source TH and a heat sink TC), the optimization of S2σ
PDF
Album
Review
Published 14 Aug 2014

Organic and inorganic–organic thin film structures by molecular layer deposition: A review

  • Pia Sundberg and
  • Maarit Karppinen

Beilstein J. Nanotechnol. 2014, 5, 1104–1136, doi:10.3762/bjnano.5.123

Graphical Abstract
PDF
Album
Review
Published 22 Jul 2014

Integration of ZnO and CuO nanowires into a thermoelectric module

  • Dario Zappa,
  • Simone Dalola,
  • Guido Faglia,
  • Elisabetta Comini,
  • Matteo Ferroni,
  • Caterina Soldano,
  • Vittorio Ferrari and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2014, 5, 927–936, doi:10.3762/bjnano.5.106

Graphical Abstract
  • thermoelectric materials (ZnO and CuO) and TEG geometrical dimension miniaturization is required to fabricate high-performance TEGs. Experimental Nanowires growth As widely reported in literature [35], Zinc oxide is an intrinsic n-type semiconductor with a large direct band-gap of 3.3 eV, presenting a wurtzite
  • CuO nanowires samples. Acknowledgements Authors gratefully acknowledge partial financial support by the IIT, Project Seed 2009 “Metal oxide NANOwires as efficient high-temperature THERmoelectric Materials (NANOTHER)”.
PDF
Album
Full Research Paper
Published 30 Jun 2014

Energy-related nanomaterials

  • Paul Ziemann and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2013, 4, 678–679, doi:10.3762/bjnano.4.76

Graphical Abstract
  • concern fuel cells, Li-based batteries, and organic solar cells, to energy-related applications of nanographite and silicon nanotubes as well as the optimization of thermoelectric materials and electrochemistry-based microscopy. We would like to thank all colleagues for their valuable contributions and
PDF
Editorial
Published 24 Oct 2013

Synthesis and thermoelectric properties of Re3As6.6In0.4 with Ir3Ge7 crystal structure

  • Valeriy Y. Verchenko,
  • Anton S. Vasiliev,
  • Alexander A. Tsirlin,
  • Vladimir A. Kulbachinskii,
  • Vladimir G. Kytin and
  • Andrei V. Shevelkov

Beilstein J. Nanotechnol. 2013, 4, 446–452, doi:10.3762/bjnano.4.52

Graphical Abstract
  • . Keywords: band-structure calculations; energy conversion; Ir3Ge7 type; solid solution; thermoelectric material; Introduction Thermoelectric materials with good efficiency are highly awaited by modern power engineering. Utilizing either the Seebeck or Peltier effects, it is possible to produce electricity
  • is the absolute temperature, S the Seebeck coefficient, σ the electrical conductivity, and κ the thermal conductivity. It is shown in the literature [1] that the best thermoelectric materials are to be sought among narrow-gap semiconductors composed of heavy elements, in which structural features
  • such as Zn4Sb3 [8], and various inorganic and intermetallic compounds with complex crystal structures [9][10]. Compounds with the Ir3Ge7 structure type, namely Mo3Sb5+δTe2−δ [11], Nb3Sb2Te5 [12] and Re3As7−xGex [13], belong to the latter type of potential thermoelectric materials and have recently
PDF
Album
Full Research Paper
Published 17 Jul 2013

Effect of deposition temperature on the structural and optical properties of chemically prepared nanocrystalline lead selenide thin films

  • Anayara Begum,
  • Amir Hussain and
  • Atowar Rahman

Beilstein J. Nanotechnol. 2012, 3, 438–443, doi:10.3762/bjnano.3.50

Graphical Abstract
  • size [2][3]. PbSe has wide applications in long and mid-wavelength infrared detectors, optical amplifiers, mid-infrared lasers, as thermoelectric materials, and as Pb2+ ion selective sensors [4][5][6][7]. Among the various techniques used to prepare PbSe thin films, such as vacuum evaporation [8
PDF
Album
Full Research Paper
Published 06 Jun 2012
Other Beilstein-Institut Open Science Activities